sexta-feira, 28 de agosto de 2020


A TEMPERATURA QUE ALTERA AS VIBRAÇÕES E OS FLUXOS DAS ENERGIAS, DIMENSÕES E FENÔMENOS TAMBÉM ALTERA OS SPINS, MOMENTUNS, MOMENTUNS MAGNÉTICOS, E OUTROS.

CONDE COM ISTO SE TEM NOVOS NÚMEROS QUÂNTICO DE GRACELI [TEMPERATURA, VIBRAÇÕES, E FLUXOS VARIACIONAIS.]

ONDE SE FORMA UMA NOVA FÍSICA QUÂNTICA, DE CONDUTIVIDADE, ELÉTRICA,  MAGNÉTICA, ELETROMAGNÉTICA, MODELO PADRÃO, SIMETRIAS, DINÂMICAS, E MECÂNICAS.

COM AÇÃO E VARIAÇÕES SOBRE A QUÍMICA, A FÍSICA, RELATIVIDADES,  E OUTROS.


OU SEJA, UM SISTEMA GENERALIZADO VARIACIONAL SOBRE TODAS AS FÍSICAS, QUÍMICAS,E BIOLOGIA MOLECULAR, E SUAS RAMIFICAÇÕES.


sexta-feira, 21 de agosto de 2020

MECÂNICA TÉRMICA QUÂNTICA GRACELI, E GENERALIZADA [AMPLIADA PARA TODOS OS RAMOS DA FÍSICA, QUÍMICA, E BIOLOGIA MOLECULAR..
TEORIA VIBRACIONAL QUÂNTICA GRACELI.

CONFORME AUMENTA A TEMPERATURA, TAMBÉM APROXIMADAMENTE AUMENTA A DILATAÇÃO [CONFORME OS MATERIAIS DENTRO DO SISTEMA SDCTIE GRACELI] COM ISTO AUMENTA AS VIBRAÇÕES, SPINS, NÚMEROS QUÂNTICO DE GRACELI, ESTRUTURA ELETRÕNICA, E ESTADOS QUÂNTICO, COM ISTO SE TEM UM SISTEMA VARIACIONAL EM TODAS AS TEORIAS E PRINCÍPIOS, E FUNDAMENTOS  ENVOLVENDO MODELO ATÕMICO, QUÍMICA QUÂNTICA, E TODA A MECÂNICA QUÂNTICA, COMO E ENTRE TANTAS  TEORIAS COM A INCERTEZA, EXCLUSÃO, ÁTOMO DE BOHR E OUTROS,  EQUAÇÕES DA PRIMEIRA E SEGUNDA TEORIA QUÂNTICA, COOMO TAMBÉM TODA TEORIA ENVOLVENDO A TERCEIRA TEORIA QUANTICA SDCTIE GRACELI.


OU SEJA, SE TEM UMA TEORIA E MECÂNICA QUÂNTICA  VARIACIONAL CONFORME SE ENCONTRA EM ÍNDICES E TIPOS DE INTENSIDADES DE TEMPERATURA.


O MESMO ACONTECE PARA A ELETROSTÁTICA, ELETROMAGNETISMO, TEORIA DE PARTÍCULAS, GAUGE, SIMETRIAS, PARIDADES, MODELO PADRÃO TÉRMICO, E OUTROS.


VEJAMOS EM:



TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]





Energia térmica é uma forma de energia que está diretamente associada à temperatura absoluta de um sistema, e corresponde classicamente à soma das energias cinéticas microscópicas que suas partículas constituintes possuem em virtude de seus movimentos de translaçãovibração ou rotação. Assume-se um referencial inercial sob o centro de massa do sistema. Em sistemas onde há radiação térmica confinada, a energia de tal radiação também integra a energia térmica. A energia térmica de um corpo macroscópico corresponde assim à soma das energias cinéticas de seus constituintes microscópicos e das energias atreladas às partículas de radiação (fótons térmicos) por ele confinadas. À transferência de energia, impelida por uma diferença de temperaturas, de um sistema termodinâmico a outro, dá-se o nome de calor[1]
A temperatura de um gás monoatômico é relacionada à energia cinética média de suas moléculas quando em movimento. Nesta animação, a proporção do tamanho dos átomos de hélio e sua separação seria alcançada sob uma pressão de 1950 atmosferas. Esses átomos em temperatura ambiente têm uma certa velocidade média (aqui reduzida em dois bilhões de vezes).
Energia térmica também pode designar, não a energia cinética total atrelada às partículas de um sistema, mas sim a energia cinética média de cada uma das partículas do sistema. Tais autores reservam então a expressão energia calorífica para se referirem à soma das energias cinéticas das partículas .[2]


Descrição[editar | editar código-fonte]

Não se deve confundir energia térmica e temperatura, tampouco deve-se pensar que temperatura é uma medida direta da energia térmica de um sistema, pois ela não o é. Ao passo que a energia térmica representa a quantidade total de energia cinética atrelada às partículas de um sistema clássico, sendo por tal uma grandeza extensiva — cujo valor depende do número N de partículas encerradas no sistema — a temperatura, uma grandeza intensiva, pode, grosso modo, ao menos em sistemas puros, ser atrelada à razão entre a energia térmica e o número de partículas encerradas no sistema; ou seja, a temperatura associa-se à energia cinética média de cada uma das partículas desse sistema.[3]
Especificamente, a temperatura atrela-se diretamente à energia cinética média por grau de liberdade das partículas do sistema. Assim, unindo-se dois sistemas idênticos a fim de se formar um único sistema maior, a energia térmica do sistema composto será o dobro da energia térmica de cada um dos sistemas gêmeos antes separados. Já a temperatura será, segundo o enunciado, a mesma, quer em qualquer dos dois sistemas gêmeos quando separados, quer no sistema siamês por eles formado.
É certo, contudo, que, para um sistema onde a natureza e o número de partículas sejam mantidos constantes, a temperatura e a energia térmica são grandezas relacionadas. Aumentando-se a energia térmica do sistema aumenta-se certamente também a energia cinética média de cada uma das partículas do sistema, e por conseguinte também a temperatura desse.
Na maioria das reações químicas espontâneas exoenergéticas a energia inicialmente armazenada na forma de energia potencial elétrica na distribuição eletrônica dos elétrons na estrutura dos reagentes é convertida em energia térmica armazenada nas partículas dos produtos, o que mantém a energia interna do sistema formado pelos reagentes e/ou produtos constante em obediência à lei da conservação da energia, mas leva a um considerável aumento na temperatura absoluta do sistema como um todo. Este sistema aquecido é então utilizado como a fonte quente (fonte térmica) em uma máquina térmica que tenha por função transformar energia térmica oriunda da fonte quente (calor) em trabalho. No processo uma parcela da energia térmica acaba renegada à fonte fria.
O calor é a transferência de energia térmica que se dá entre dois sistemas devido exclusivamente à diferença de temperatura entre esses sistemas ou corpos.

Unidades[editar | editar código-fonte]

A energia térmica e o calor medem-se em unidades de energia: o Joule no sistema SI, ou de forma alternativa a caloria, esta última certamente mais adequada à medida de calor e não da energia térmica propriamente dita. Embora a temperatura absoluta também possa ser medida em (sub)unidades de energia, essa é contudo medida em kelvin, unidade essa que difere daquela apenas por um fator igual à unidade atrelada à constante de Boltzmann.
A definição de caloria é a quantidade de calor (energia) necessária para elevar-se 1 grama de água de 14,5 graus Celsius (°C) para 15,5 °C.
Em linguagem matemática a energia térmica é definida como:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Para sistemas onde vale o princípio da equipartição da energia, o que aplica-se a vários sistemas termodinâmicos, ela pode ser expressa por:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde KB corresponde à constante de Boltzmann, N corresponde ao número de partículas no sistema, T corresponde à temperatura absoluta do sistema e r corresponde ao número de graus de liberdade por partícula do sistema, podendo r assumir valores entre r=9 - três graus de translação, três de rotação e três de vibração - para sistemas compostos por partículas mais complexas e r=3 nos sistemas tridimensionais mais simples - compostos por partículas puntuais com três graus de translação apenas.




princípio da equipartição da energia é um princípio que assevera que para cada grau de liberdade dos entes de um certo tipo de sistema a contribuição para a energia total é de 

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  é a constante de Boltzmann.

Formalismo hamiltoniano[editar | editar código-fonte]

Se um sistema apresenta um hamiltoniano cujas coordenadas tem termos quadráticos da forma
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


a contribuição para cada grau de liberdade (ou seja, cada coordenada) é dada por .



Em mecânica estatística clássica, o teorema da equipartição é uma fórmula geral que relaciona a temperatura de um sistema com a sua energia média. O teorema da equipartição é também conhecido como lei da equipartiçãoequipartição de energia ou simplesmente equipartição. A ideia central da equipartição é a de que, em equilíbrio térmico, a energia é partilhada de maneira igual entre as suas várias formas. Por exemplo, a energia cinética média no movimento translacional de uma molécula deve ser igual à energia cinética média do seu movimento rotacional.
Da aplicação do teorema da equipartição surgem predições quantitativas. Tal como no teorema do virial, dá as energias cinética e potencial totais do sistema a uma dada temperatura, a partir da qual é possível calcular a capacidade térmica do sistema. No entanto, a equipartição também dá os valores médios dos componentes individuais da energia, tal como a energia cinética de uma partícula específica ou a energia potencial de uma única mola. Por exemplo, prediz que cada molécula num gás perfeito possui uma energia cinética média com um valor de (3/2)kBT, em equilíbrio térmico, onde kB é a constante de Boltzmann e T é a temperatura. De uma maneira mais geral, o teorema pode ser aplicado a qualquer sistema físico clássico em equilíbrio termodinâmico, não importando o seu grau de complexidade. O teorema pode ser utilizado para derivar a lei dos gases ideais e a lei de Dulong-Petit para os calores específicos dos sólidos. Também pode ser utilizado para prever as propriedades das estrelas, até mesmo de anãs brancas e estrelas de neutrões, dado que a sua validade se estende a situações em que efeitos relativistas são considerados.
Apesar de o teorema da equipartição proporcionar predições muito precisas em certas circunstâncias, isto não é assim quando os efeitos quânticos são significativos, nomeadamente quando estão em causa temperaturas suficientemente baixas. A equipartição é válida somente quando a energia térmica kBT é muito maior que o espaçamento entre os níveis de energia quânticos. Quando a energia térmica é menor que o espaçamento entre níveis de energia quânticos, num grau de liberdade específico, a energia média e a capacidade térmica deste grau de liberdade são menores que os valores preditos pela equipartição. Diz-se que tal grau de liberdade está "congelado". Por exemplo, o calor específico de um sólido diminui a baixas temperaturas dado que vários tipos de movimentos se congelam em vez de permanecerem constantes como prevê a equipartição. Estas reduções nos calores específicos foram dos primeiros sinais notados pelos físicos do século XIX no sentido de que a física clássica estaria incorrecta e que era necessário avançar no desenvolvimento de novas teorias físicas. Juntamente com outras evidências, a falha da equipartição no campo da radiação electromagnética — também conhecida como catástrofe ultravioleta — induziu Albert Einstein a sugerir que a luz estava quantizada em fotões, uma hipótese revolucionária que incentivou o desenvolvimento da mecânica quântica e da teoria quântica de campos.


Conceito básico e exemplos simples[editar | editar código-fonte]

Ver artigo principal: Energia cinética e Capacidade térmica
Figura 2. Funções de densidade de probabilidade da velocidade molecular de quatro gases nobres a uma temperatura de 298,15 K (25 °C). Os quatro gases são hélio (4He), néon (20Ne), argon (40Ar) y xénon (132Xe); os subíndices indicam os seus números de massa. Estas funções de densidade de probabilidade têm dimensões de probabilidade vezes o inverso da velocidade; dado que a probabilidade é adimensional, as mesmas expressam-se em unidades de segundos por metro.
A palavra "equipartição" significa "partilha por igual", derivando do latim equi da primeira parte da palavra, æquus ("igual ou plano"), e "partição" da segunda parte da palavra, partitionem ("divisão, parte").[1][2]
O conceito original da equipartição era a de que a energia cinética total de um sistema é compartilhada em partes iguais entre todas as partes independentes, em média, uma vez o sistema houvesse alcançado o equilíbrio térmico. A equipartição também faz predições quantitativas de ditas energias. Por exemplo, prediz que cada átomo de um gás nobre, em equilíbrio térmico à temperatura T, possui uma energia cinética translacional média de (3/2)kBT, onde kB é a constante de Boltzmann. Portanto, para uma mesma temperatura, os átomos mais pesados do xenón terão uma velocidade média menor que a dos átomos de hélio, que são mais leves. A Figura 2 mostra a distribuição de Maxwell-Boltzmann para as velocidades dos átomos nos quatro gases nobres.
É importante destacar neste exemplo, que a energia cinética depende de forma quadrática em relação à velocidade. O teorema da equipartição mostra que, em equilíbrio térmico, todo o grau de liberdade (como por exemplo, uma componente da posição ou velocidade de una partícula) que possui somente uma dependência quadrática na energia possui uma energia média de ½kBT e portanto contribui ½kB para a capacidade térmica do sistema. Isto possui numerosas aplicações.

Energia de translação e gases ideais[editar | editar código-fonte]

Ver artigo principal: Gás ideal
A energia cinética (newtoniana ou clássica) de uma partícula de massa m e velocidade v é dada pela expressão:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde vxvy e vz são as componentes cartesianas da velocidade vH é o hamiltoniano, e portanto será utilizado como símbolo da energia dado que a mecânica de Hamilton desempenha um papel destacado na forma mais geral do teorema da equipartição.
Como a energia cinética é quadrática nos componentes da velocidade, por equipartição destas três componentes, cada uma contribui com ½kBT para a energia cinética média em equilíbrio térmico. Portanto, a energia cinética da partícula é (3/2)kBT, como no caso do exemplo dos gases nobres discutido previamente.
De forma mais geral, num gás ideal, a energia total consiste exclusivamente de energia cinética de translação: já que se assume que as partículas não possuem graus internos de liberdade e se movem de forma independente umas das outras. A equipartição portanto prediz que a energia total média de um gás ideal com N partículas é (3/2) N kBT.
Portanto, a capacidade térmica de um gás é (3/2) N kB e a capacidade térmica de um mol de partículas de dito gás é (3/2)NAkB=(3/2)R, onde NA é o número de Avogadro e R é a constante universal dos gases perfeitos. Como R ≈ 2 cal/(mol·K), a equipartição prediz que a capacidade térmica molar de um gás ideal é aproximadamente 3 cal/(mol·K). Esta predição foi confirmada experimentalmente[3].
A energia cinética média também permite calcular a raiz da velocidade quadrática média vrms das partículas de gás, como:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde M = NAm é a massa de um mol de partículas de gás. Este resultado é muito útil para aplicações tais como a Lei de Graham de efusão, da qual se deriva um método para enriquecer Urânio.[4]

Energia rotacional e agitação molecular em solução[editar | editar código-fonte]

Ver artigo principal: Velocidade angular e Difusão rotacional
Um exemplo similar é o do caso de uma molécula que roda e cujos momentos de inercia principais são I1I2 e I3. A energia rotacional de dita molécula é dada por:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde ω1ω2, e ω3 são os componentes da velocidade angular. Seguindo um raciocínio similar ao utilizado no caso da translacção, a equipartição implica que, em equilíbrio térmico, a energia média de rotação de cada partícula é (3/2)kBT. De forma similar, o teorema da equipartição permite calcular a velocidade angular média (mais precisamente, a raiz média quadrática) das moléculas.[5]
A rotação das moléculas rígidas — ou seja, as rotações aleatórias de moléculas em solução — joga um papel de destaque nas relaxações observadas por meio de ressonância magnética nuclear, particularmente por ressonância magnética nuclear de proteínas e por acoplamento dipolar residual.[6] A difusão rotacional pode também ser observada mediante outras técnicas biofísicas tais como a anisotropia fluorescente, a birrefringência de fluxo e a espectroscopia dieléctrica.[7]

Energia potencial e osciladores harmónicos[editar | editar código-fonte]

A equipartição aplica-se tanto à energia potencial com à energia cinética. Exemplo importante disto são os osciladores harmónicos tais como as molas, que possuem una energia potencial quadrática:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde a constante a descreve a rigidez da mola e q é o desvio em relação ao equilíbrio. Se dito sistema unidimensional possui uma massa m, então a sua energia cinética Hkin é ½mv² = p²/2m, com v e p = mv a velocidade e o momento do oscilador, respectivamente. Combinando estes termos obtém-se a energia total[8]:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Deste modo, a equipartição implica que, em equilíbrio térmico, o oscilador possui uma energia média:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde os colchetes angulares  representam a média da quantidade contida entre eles.[9]
Este resultado é válido para todo o tipo de osciladores harmónicos, como por exemplo num pêndulo, numa molécula que vibra ou num oscilador electrónico passivo. Existem numerosos sistemas que contêm este tipo de osciladores; mediante a equipartição, cada um destes osciladores recebe uma energia média total kBT e portanto contribui kB para a capacidade térmica do sistema. Esta última relação pode ser usada para obter a fórmula para o ruído de Johnson–Nyquist ou "ruído térmico"[10] e a Lei de Dulong-Petit para a capacidade térmica molar dos sólidos. Esta última aplicação foi especialmente relevante na história da equipartição.




energia interna de um sistema termodinâmico define-se pela energia total considerada no sistema. Isso inclui a energia cinética e a energia potencial que se encontra nele, sendo essas necessárias para criar ou preparar o mesmo em qualquer estado.
A energia interna de um sistema pode ser aumentada pela introdução de matéria, pelo calor ou pelo trabalho termodinâmico neste. Quando a transferência de matéria é impedida por paredes impermeáveis, diz-se que o sistema está fechado e a 1ª Lei da termodinâmica pode ser considerada ao se definir a energia interna como a soma algébrica do "calor" adicionado e o "trabalho" feito pelo sistema em seu entorno. Se as paredes não permitem a troca nem de matéria nem de energia, diz-se que o sistema está isolado e sua energia interna não pode mudar.[1]
A unidade de energia no Sistema Internacional de Unidades (SI) é o Joule (J). Também usa-se uma densidade de energia intensiva correspondente, chamada energia interna específica , que é ou relativa à massa do sistema, com a unidade J / kg, ou relativa à quantidade de substância com unidade J / mol ( interno molar energia ).


Definição[editar | editar código-fonte]

Nas reações químicas os núcleos dos átomos, e segundo Lavoisier também a massa total do sistema, permanecem inalterados. No estudo da termodinâmica de tais reações, a parcela de energia interna atrelada à massa de repouso mostra-se irrelevante. Ao se determinar as variações da energia interna , essa parcela sempre se cancela, e pode ser previamente ignorada.
Em Termodinâmica a energia interna  de um sistema corresponde à soma de todas as energias cinéticas - com destaque para energia térmica - e das energias potenciais - com destaque para a energia potencial elétrica - associadas às partículas que compõem um dado sistema termodinâmico.
A energia atrelada à radiação térmica confinada, também integra a energia interna, sua contribuição inclui-se usualmente na parcela de energia térmica. Esse tratamento rigoroso é considerado na física quântica juntamente com o princípio da equivalência massa energia (E=mC²). Para sistemas da física clássica estas parcelas podem, entretanto, ser perfeitamente suprimidas uma vez que, nestes casos, a lei da conservação de energia degenera-se em duas leis distintas, as leis clássicas da conservação da energia e a da conservação da massa. Inclusive, em sistemas constituídos por partículas perfeitamente neutras, não espera-se a existência de radiação térmica (esta presente em escala desprezível).
Na maioria das reações químicas espontâneas exotérmicas a energia inicialmente armazenada na forma de energia potencial elétrica, na distribuição eletrônica dos elétrons na estrutura dos reagentes, é convertida em energia térmica armazenada nas partículas dos produtos, o que mantém a energia interna do sistema em obediência à lei da conservação da energia, todavia, leva a um considerável aumento da temperatura do sistema como um todo. Este sistema aquecido é então utilizado como fonte quente em uma máquina térmica que tenha por função transformar parte da energia térmica da fonte quente em trabalho. Durante o funcionamento da máquina térmica as energias térmica e interna da fonte quente diminuem de forma a suprirem o trabalho realizado e a energia térmica que acaba obrigatoriamente (em acordo com a 2ª lei da termodinâmica) renegada à fonte fria.
A energia interna é uma função de estado de forma que sua variação depende apenas dos estados inicial e final.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Há duas formas de se fazer a energia interna de um sistema fechado variar: via calor, e via trabalho. A 1ª Lei da termodinâmica estabelece que a variação da energia interna () de um sistema corresponde à energia térmica (Q) recebida pelo sistema na forma de calor menos a energia cedida pelo sistema à sua vizinhança na forma de trabalho (W).

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Termodinâmica[editar | editar código-fonte]

Em relação aos constituintes microscópicos, a definição de energia interna deu-se em primeira mão através de medidas e observações atreladas a grandezas macroscopicamente estabelecidas e em princípios físicos fundamentais como o da conservação da energia. Dos rigores ligados à termodinâmica, derivou-se também que, quando expressa em função das grandezasentropia (S), número de elementos (N) e do volume (V) - para o caso de sistemas termodinâmicos mais simples - a energia interna  é, assim como o são as respectivas Transformadas de Legendre, a saber a Energia livre de Helmholtz , a Entalpia  e a Energia livre de Gibbs , uma equação fundamental para os sistemas termodinâmicos, sendo então possível, a partir desta e do formalismo matemático inerente à termodinâmica, obter-se qualquer informação física relevante a qual esta encontre-se vinculada.[2]
sol observado através de uma câmera sensível ao ultravioleta. Dadas as dimensões e as reações nucleares que ocorrem no sol, todas as parcelas de energia atreladas à definição de energia interna são de grande importância ao se buscar compreender a termodinâmica solar.
As transformadas de Legendre da energia interna  bem como ela própria são conhecidas como potenciais termodinâmicos.



















Aparte os gases ideais - uma idealização extremamente útil como primeiro passo no estudo e compreensão dos sistemas físicos termodinâmicos - verifica-se que a estrutura da matéria conforme atualmente concebida implica relações ora mais ora menos vigorosas entre as partículas fundamentais que a integram. Particularmente importante no estado sólido, e gradualmente menos significativa nos líquidos e nos gases reais, em escala atômica as relações entre as partículas em questão - os átomos - são sobretudo as determinadas por interações de natureza elétrica. Quer ionizados quer não, em sólidos os átomos assumem posições relativas tais que, caso esses tentem se afastar demasiadamente, os efeitos elétricos oriundos da interação das nuvens eletrônicas entre si e com os respectivos núcleos atômicos estabelecem forças que novamente os aproximam. Contudo a aproximação em demasia também implica forças de natureza elétrica, agora repulsivas. O balanço entre as duas situações estabelece configurações espaciais de equilíbrio, sendo responsável, entre outros, pelas estruturas das ligações covalentes bem como da amostra como um todo em compostos moleculares; pelas disposições dos íons bem como pelo parâmetros de rede em estruturas iônicas cristalinas; e pelas características dos materiais com ligações metálicas.
O comportamento de tais interações é descrito via considerações acerca das energias potenciais elétricas - no contexto nomeada energia química - envolvidas. Embora as energias potenciais sejam usualmente dependente das separações atômicas de maneira não muito trivial, os cálculos demonstram que, para pequenos deslocamentos em torno das posições de equilíbrio, tal dependência pode ser muito bem descrita via uma aproximação quadrática. Tal potencial energético implica diretamente, como resposta às equações dinâmicas, movimentos harmônicos em torno dos pontos de equilíbrio para as partículas em questão; em tudo similares aos movimentos descritos por objetos maciços quando atrelados a molas e sujeitos à lei de Hooke. A aproximação torna-se gradualmente menos precisa para os líquidos e talvez inadequada os gases reais em virtude do gradual aumento nas amplitudes de movimento das partículas em torno dos assumidos existentes pontos de equilíbrio, contudo para sólidos e líquidos o princípio permanece essencialmente válido. Sendo característico do comportamento elástico, a aproximação de potencial parabólico em torno dos pontos de equilíbrio permite por comparação modelar a matéria como um conjunto de partículas puntuais inter-acopladas por molas; e em tal modelo é fácil compreender-se a natureza da transmissão de energia térmica por condução.
A condução é feita devido às moléculas de maior energia cinética, oscilando com maiores amplitudes em torno dos pontos de equilíbrio, transmitirem energia através dos acoplamentos elásticos para as partículas vizinhas menos energéticas. Lembrando-se do conceito de temperatura como grandeza proporcional à energia cinética média das partícula do sistema, percebe-se claramente a diferença de temperaturas como sendo o fator causal do calor por condução.
A condução é, conforme esperado, geralmente muito significativa em sólidos e líquidos, mas certamente também ocorre, contudo de forma menos importante, em gases. Considerado que os gases reais não são a rigor gases ideias, sabe-se que há interação entre as partículas que o compõem, de forma que o modelo anterior não mostra-se de todo errado. Contudo, mesmos no caso dos gases ideais - onde não verifica-se, por definição, qualquer acoplamento entre as partículas que o definem - pode-se ainda conceber a existência de condução térmica, visto que essas partículas ainda interagem, contudo apenas com as paredes do recipiente que as encerram. Se duas paredes em extremidades opostas do recipiente contendo um gás ideal forem mantidas à temperaturas diferentes, verificar-se-á fluxo de calor por condução entre as mesmas visto que as partículas gasosas, embora possam mover-se livremente no interior do recipiente, encontrando-se contudo por esse confinadas, e por tal colidindo ora com uma, ora com a outra parede do recipiente.
Quantitativamente, a taxa ou fluxo de calor  - também nomeada corrente térmica (corrente de calor[Ref. 4]) é usualmente medido em joules por segundo (watts), ou de forma alternativa em calorias por segundo - que ocorre em uma barra cilíndrica ou prismática cujas extremidades estejam conectadas a reservatórios térmicos a diferentes temperaturas, e cuja extensão longitudinal encontre-se envolta por isolante térmico, quando em regime estacionário, é função das dimensões da barra, do material do qual é feita, e da diferença de temperaturas entre as fontes quente e fria às quais essa encontra-se conectada. Empiricamente determina-se, o que ficou conhecido como Lei do resfriamento de Newton[Ref. 5], que:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


com
.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Barra material intercalada entre dois reservatórios térmicos a diferentes temperaturas. Há uma transferência de calor Q através da barra a uma taxa  que depende do comprimento x = L bem como da seção reta A da barra; do material do qual a barra é feita; e também da diferença de temperaturas dos reservatórios. A barra e os reservatórios encontram-se envoltos por fronteira adiabática (não representada).
Nas expressões acima têm-se:
  •  área da seção reta perpendicular ao fluxo de calor;
  •  intervalo de tempo considerado;
  •  diferença de temperaturas entre os extremos da barra;
  •  quantidade de calor que flui através da seção no intervalo  considerado;
  •  comprimento da barra (X na figura);
  •  condutividade térmica, constante que caracteriza o material do qual a barra é feito.
Apresenta-se também uma tabela com as condutividades térmicas para alguns materiais de uso frequente.
Condutividade térmica  à temperatura ambiente igual a[Ref. 2]
SubstânciaSubstância
Prata4060,097Hidrogênio0,1433 x 10 -6
Cobre3850,092Gelo a 0oC2,20,53 x 10 -3
ouro3170,076Amianto0,0922 x 10 -6
alumínio2050,049Vidro[0,6 - 0,8][0,14 - 0,19] x 10 -3
chumbo34,78,3 x 10 -3Concreto0,80,19 x 10 -3
Titânio21,95,2 x 10 -3Baquelite1,40,33 x 10 -3
Ferro80,20,019Madeira[0,04 - 0,26][9,6 - 62]x 10 -6
Aço carbono500,012Cortiça0,049,6 x 10 -6
Aço inox143,3 x 10 -3Aerogel0,0030,7 x 10 -6
ar0,0245,7 x 10 -6Mylar0,00010,02 x 10 -6

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Cabo coaxial: composto por cilindro e tubos concêntricos, de materiais diferentes. Um exemplo ilustrativo de objeto com ausência de isotropia em sua seção reta, contudo dotado de simetria axial.
Os princípios físicos envolvidos no problema acima constituem o ponto de partida para a solução de qualquer problema relativo ao calor por condução. Como mero exemplo de seu uso, considerando-se ainda a situação em regime estacionário, o fundamento matemático atrelado pode ser estendido a cilindros ou prismas não isotrópicos ao longo das seções retas, para tal bastando transpor-se a área A para o outro lado da equação a fim de definir-se uma nova grandeza, denominada densidade de corrente térmica  tal que:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Tal definição, em termos diferenciais, implica:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


com
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Na expressão acima,  representa a densidade de corrente de calor em um diferencial de área dA situado em um ponto específico (x,y,z) do volume, ponto esse caracterizado por uma condutividade térmica  constante ao longo do eixo x (o eixo axial). Os termos dQ, dA, dT bem como dt são os respectivos diferenciais atrelados às grandezas anteriormente definidas, determinados em cada ponto do volume em consideração.
A diferença entre  e  reside basicamente no fato de que  representa, no caso geral, o valor médio de  sobre a seção reta total A do prisma ou cilindro especificado:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


No caso da barra isotrópica antes considerado, sendo o material essencialmente o mesmo em todos os pontos,  iguala-se a  em qualquer ponto.
A integração é fácil quando tem-se (dT/dX) = (dT/dL) constante e por tal facilmente conhecido - o que ocorre quando há simetria longitudinal de fluxo de calor, conforme considerado - contudo pode implicar problemas bem mais sofisticados - exigindo considerações vetoriais e a aplicação de conceitos como solução por séries de Fourier bem como técnicas específicas, a exemplo as aplicadas nos problemas com condições de contorno não adiabáticas de Neumann ou Dirichilet - nos casos onde não há tal simetria e a próprio gradiente de temperatura (dT/dX no caso considerado) é também uma grandeza a ser determinada, como função não apenas de cada ponto do objeto em consideração mas também como função do tempo. Buscam-se nesses casos as determinações não apenas dos estados estacionários condizentes com as condições de contorno fornecidas como também a evolução do sistema no tempo; incluso o comportamento transitório, a partir do estado inicial também fornecido. Tais problemas são usualmente complicados o suficiente para demandarem artigo específico e, por vezes, seções inteiras de livros sobre equações diferenciais.[Ref. 5] As presenças de fontes térmicas também devem ser consideradas, e estas geralmente complicam ainda mais os problemas; que matematicamente consistem em se buscar as soluções adequadas para a equação diferencial parcial conhecida como Equação da Condução de Calor:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Na equação acima,  corresponde ao campo de temperaturas como função do tempo e das coordenadas espaciais procurado; e  informa acerca das fontes térmicas presentes no sistema sob análise; o "nabla quadrado" () representa o operador Laplaciano - em essência derivadas parciais de segunda ordem em relação a cada uma das coordenadas espaciais; e  é o coeficiente de difusão térmica, constante intimamente relacionada à condutividade térmica k.
A equação de condução do calor é matematicamente obtida a partir dos princípios físicos básicos encerados na Lei do resfriamento de Newton[Ref. 5].
O estudo do calor por condução mostra-se relevante em eletrônica em virtude da integração dos circuitos eletrônicos. Os dissipadores de energia térmica, popularmente conhecidos como dissipadores de calor, funcionam essencialmente via calor por condução. A condução térmica tem grande aplicação também no estudo e projeto das máquinas térmicas, a exemplo nos projetos dos motores a combustão interna, bem como nos projetos de dispositivos refrigeradores, como geladeiras e ares-condicionados.





Quando um sistema imerso em um ambiente à pressão constante sofre um processo qualquer, indo de um estado inicial "i" para um estado final "f", a quantidade de energia trocada com a vizinhança na forma de trabalho é definida apenas pela variação de volume  sofrida pelo sistema e pela pressão P do ambiente constate durante todo o processo. Assume-se aqui, sem perda de generalidade, que tem-se uma transformação quase-estática, de forma que a pressão P é também a pressão do sistema em si. A citada quantidade de trabalho W realizada pelo sistema sobre a vizinhança sob pressão constante é determinável através da expressão:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


É de interesse mensurar neste tipo de transformação a quantidade de calor trocada entre o sistema e sua vizinhança. Ao ceder-se certa quantidade de calor ao sistema, este expande-se, realizando um trabalho W sobre a vizinhança. A energia entregue à vizinhança - e que por tal abandona o sistema - é transferida às custas de parte do calor que entra no sistema, de forma que apenas parte do calor transferido ao sistema implica real aumento na energia interna deste sistema. A lei da conservação da energia fornece:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Como a energia interna e o volume do sistema são funções de estado, segue-se que nestes processos a quantidade de calor trocada também é uma função de estado. A expressão acima permite a definição de uma grandeza física conhecida por entalpia H de forma que:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Decorre que a entalpia pode ser definida pela função de estado introduzida por Josiah Willard Gibbs:
Definição de Entalpia

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS










Transformações reversíveis[editar | editar código-fonte]

A entropia é um conceito essencial ao estudo das máquinas térmicas.
A ideia de entropia, uma grandeza física que encontra sua definição dentro da área da termodinâmica,[Nota 4] surgiu no seguimento de uma função criada por Clausius[3] a partir de um processo cíclico reversível. Sendo Q o calor trocado entre o sistema e sua vizinhança, e T a temperatura absoluta do sistema, em todo processo reversível a integral de curva de  só depende dos estados inicial e final, sendo independente do caminho seguido. Portanto deve existir uma função de estado do sistema, S = f (P, V, T), chamada de entropia, cuja variação em um processo reversível entre os estados inicial e final é:[Nota 5]
, sendo Q reversível
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A entropia física, em sua forma clássica é dada por:
, desde que o calor seja trocado de forma reversível
ou, quando o processo é isotérmico:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde S é a entropia,  a quantidade de calor trocado e T a temperatura em Kelvin.
O significado desta equação pode ser descrito, em linguagem corrente, da seguinte forma:
Em processos reversíveis como o descrito, quando um sistema termodinâmico passa do estado 1 ao estado 2, a variação em sua entropia é igual à variação da quantidade de calor trocada (de forma reversível) dividido pela temperatura.




Em 1877Ludwig Boltzmann visualizou um método probabilístico para medir a entropia de um determinado número de partículas de um gás ideal, na qual ele definiu entropia como proporcional ao logaritmo neperiano do número de microestados que um gás pode ocupar:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Onde S é a entropia, k é a constante de Boltzmann e Ω é o número de microestados possíveis para o sistema.
O trabalho de Boltzmann consistiu em encontrar uma forma de obter a equação entrópica fundamental S a partir de um tratamento matemático-probabilístico[Nota 10] facilmente aplicável aos sistemas em questão. Ao fazê-lo, conectou o todo poderoso formalismo termodinâmico associado à equação fundamental a um método de tratamento probabilístico simples que exige apenas considerações físicas primárias sobre o sistema em análise, obtendo, a partir de considerações básicas, todo o comportamento termodinâmico do sistema. A equação de Boltzman mostra-se muito importante para o estudo termodinâmico de tais sistemas, e reconhecida como tal pelo próprio autor, encontra-se gravada em sua lápide.[Nota 11]